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1. INTRODUCTION

The structure of matter on a molecular length scale can be revealed by
diffraction studies using radiation with wavelength in the Angstrgm region. If
the radiation couples weakly to the scattering objects, as is the case for
neutrons and X-rays (but not for electrons), the interpretation of the diffraction
pattern in terms of the underlying structure becomes particularly simple and
reliable due to the validity of the Born approximation, which in this context is
also called kinematical diffraction. On the other hand, if the coupling is weak,
the beam has to be sufficiently intense and/or the sample must be of sufficient
size to obtain an accurate diffraction pattern within a reasonable time. In a
surface structure the number of diffracting atoms, confined within a
nanometer thick surface layer, is comparatively small.

For this reason neutron diffraction has not yet been developed to be a
significant tool in surface science although neutrons are sensitive to
magnetism and to hydrogen locations by the use of a controlled isotopic ratio of
protons to deuterons.

Very intense X-ray beams are now available in synchrotron radiation
laboratories, and surface X-ray diffraction methods have been developed con-
comitantly. In this paper we shall confine ourselves to describing methods for
studying surfaces of liquids. These can be simple liquids such as water or
methanol for which the surface diffuseness due to thermal fluctuations has
been determined', they can be liquid crystals with smectic layering near the
free surface?, or they can be heterogeneous systems such as a monolayer of
amphiphilic molecules on a water surface?.

It is useful to distinguish between two geometries of the diffraction
experiment as shown in Fig. 1.1. Specular reflection, shown in the top part
has a wavevector transfer Q perpendicular to the liquid surface and thus
measures the average density variation across the surface. In the diffraction
geometry, shown in the bottom part, surface sensitivity is obtained by means of
grazing incidence of the incoming beam. In-plane structure of the surface is
probed by scanning the angle 26 or the corresponding horizontal wavevector
transfer Qpor. For fixed 26 or Qpor the intensity variation with Q, as observed,
e.g., with a vertical position sensitive detector reflects the structure
perpendicular to the surface just as does specular reflection. Nevertheless the
two methods do not necessarily provide identical information. If, for example,
we consider a monolayer film on water with coexisting two-dimensional




Q=keki

aj A

Q,=k(sinaqj + sinay)

Qz=ksinaf

Qhor=2ksin0
af

y

- ke

Fig. 1.1. Top: Specular reflection geometry probes the density profile across
the interface.
Bottom: By grazing incidence the X-ray penetration depth A can be
limited to a few nanometers. The evanescent wave is diffracted by
the in-plane structure of the Langmuir film.

crystalline and liquid phases, the Q, variation of intensity at 20 corresponding
to Bragg reflection from the crystalline phase reflects the thickness of the
crystallites only, whereas the specular reflection pattern measures some sort of
average thickness of the liquid and crystalline film.

The paper is organized as follows. First we recall and discuss Snell's and
Fresnel's laws for X-ray optics. We then derive the general relation of the
density profile across the surface to specular reflectivity (Fig. 1.1a) and to the
Qz-variation in grazing incidence diffraction (Fig. 1.1b). Specular reflectivity
is illustrated by two examples. The first is reflection from a bare water surface
and the determination of the diffuseness of the air-water interface due to
thermally excited capillary waves. In the second example we consider a
monomolecular film of an amphiphilic molecule, arachidic acid, floating on
water, as the area per molecule is varied by a moveable barrier in a Langmuir
trough®.




The reflectivity data, analyzed in terms of a smeared box model of the
molecular density, suggests that the hydrocarbon tails are close-packed but tilt
uniformly as more area becomes available per molecule.

The grazing incidence diffraction (GID) technique is used to examine the
molecular structure of the arachidic acid film in more detail. By mapping the
intensity variation with both 20 and ar(Fig. 1.1b) we find:

(i) In the most compressed phase the molecules are upright and form a
hexagonal lattice.

(ii) As the pressure is released the molecules tilt towards their nearest
neighbours and the hexagonal lattice becomes uniaxially distorted in the
direction of tilt.

(iii) The tilt angle and the density profile deduced from the GID data are
consistent with the interpretation of the specular reflection data.

2. X-RAY OPTICS

For X-rays or neutrons of wave vector k the refractive index, n, of a medium
can be simply related to the scattering properties of the medium, see, e.g.,
appendix of Ref. 3. For X-rays the relevant parameters are the Thompson
scattering length of a single electron, ry, and the electron density, pel:

_ - ~2
n=1-25, 6—2npelr0k

Here, for simplicity we have neglected absorption effects and effects occur-
ring when the photon energy is close to a resonance between the electron shells
of the atom. The geometry of refraction at a sharp interface is as depicted in
Fig. 2.1 with the angles a and a' being related by Snell's law: cos(a)/cos(a') = n.
Since n is only very slightly less than unity (and can be written asn = 1-a.2/2)

Z

Fig.2.1. The geometry of glancing incidence reflection and transmission
at a discontinuous interface.



all glancing angles are small and expansion of Snell's law yields

a?=a?+ af_

The reflectivity Ry is the square of the ratio of the reflected and incident wave
amplitudes. For small angles the Fresnel law for a sharp interface becomes
particularly simple. The corresponding Fresnel reflectivity R is

R, =|(a—a")/(a +a')|2 N (chc/2c1)4 . (2.1)

u>ac
Similarly one finds the transmitted or refracted wave intensity TF,
normalised to the incident intensity,

2.2
T,= |2a/a +a") . (2.2)

Snell's and Fresnel's laws are derived by satisfying the boundary conditions for
the X-ray wave fields at the interface.

Next, to include absorption effects in the refractive index, n, consider a
plane wave, exp(—ikz), at normal incidence on a semi-infinite medium with
linear absorption coefficient p. On entering the medium the wavevector is
changed to nk. We would like to write the plane wave in the medium as
exp(—inkz), but we require an exponentially decaying amplitude exp(-pz/2).
Formally, this is obtained by letting n be a complex number with an imaginary
part —if}, with the relation to p given by equating — fkz with —pz/2 or
B = p/(2k). Including absorption effects thus leads to a complex index of
refraction

with n=1-5-ip (2.3)
. 2.4
(lcz =25 = 4nr0k“2pe€( 1+£'/2) (24)
and
(2.5)

—2 »yr;
B=p/(2k)= 2r1r0k pee(f 17.)

In Egs. (2.4) and (2.5), f ' and f ” are the real and imaginary parts of the
anomalous dispersion correction to the atomic scattering factor®, which can be
important when the X-ray energy is close to an absorption edge. Z is the
number of electrons. Below, for simplicity, such effects will be assumed to be
included in the electron densities, when necessary.

Including absorption effects, Snell's law for small angles becomes

. . 2.6
a?=a'2+ acz+i2ﬁ ( )

whereas the expressions (2.1) and (2.2) remain valid using a' from Eq. 2.6.

The z-dependence of the transmitted wave amplitude is exp(—ik'a'z) which
is proportional to exp(—k'Im(a')z). The 1/e depth for the intensity, A, is thus
given by A—1 = 2k'Im(a'). However, for X-rays the deviation of n from unity is
very small and the difference in length between k and k' can be neglected. The
results for Rp, Tr and A depend on several parameters: The incident angle a,
density and absorption in the medium, as well asthe wavevector. In order to
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get an overview of this multi-parameter problem it is convenient to use
suitable units and to estimate orders of magnitudes. The natural unit for
angles is the critical angle a.. However, in connection with diffraction and
reflection phenomena from non-homogeneous media, the wavevector transfer
Q:=2ksin(a)=2ka is a more useful variable than just the grazing angle a. The
natural unit for Q; is Q. = 2ka. which, incidentally, varies only slightly with
substance: Q.=0.0217 A-1 for a light material such as water and Q,=0.0678
A-1 for a heavy material like mercury. In terms of the dimensionless quantities
x and x' for wavevector transfer and b for absorption

x=Q,/Q =ala, x'=2ka'/Q =Q,/Q =a/a_ (omplex), b=-@uk/Q%, 27
with x' determined from the dimensionless form of Eq. 2.6
x2=x%+1+i(2b) (2.8)
and recalling explicitly the formula for Q. (cf. Eq. 2.4):
Q, =4(mp,, r)"? (2.9)

the final formulas for Rr, TF and A become

2.10
RF(X)=|(x—x')/(x+x')[2, ( )
2.11
T,(x)=|2x/(x +x ", (2.11)
AT x) = Q Im (x"). (2.12)

Fig. 2.2 (left part) shows from top to bottom graphs of Rr, AQ., Tr and the
phase of the reflected wave for different absorption parameters b. For x=1.4,
the dependence on absorption is very small and the four quantities are
compared to their asymptotic forms in the right part of Fig. 2.2. It may be
useful to discuss separately the two limiting cases a®>a, and a<<€a. as well as
the special case of a =a..

(i) x>>1o0ora>>a:

In this case the solution for x'in Eq. 2.8 yields Re(x')= x and Im(x') = - b/x.
From Eq. 2.10 we find Rp(x) = 1/(2x)*, in phase with the incident wave . The
incident wave is almost completely transmitted though the interface, and the
penetration depth is a/p. The reflected intensity falls off as

(2.13)
4
R,—(@Q,/2Q,)

(ii) x<<lora<<ag:

In this case x' is almost purely imaginary with Im(x') = 1, implying a
reflectivity Rp(x) close to unity. The reflected wave is out of phase with the
incident wave, so the transmitted wave becomes very weak. It propagates
nealy parallel to the surface with a minimal penetration depth of Q¢!,
independent of a for a < <a.. Due to its small penetration depth, the wave field
below the interface is called an evanescent wave.
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Fig.2.2. Dependence on x=Q,/Q.=al/a, of reflectivity, penetration depth,
evanescent wave intensity and phase difference between reflected and
incident wave for various values of the absorption parameter b.



(i) x=1o0ora=ac:

From Eq. 2.8 we find x'=|b|1/2 (1 + i). Since b<€1, Rp(x) = 1.The reflected
wave is in phase with the incident wave implying that the evanescent wave
amplitude approaches twice the incident wave amplitude. The penetration
depth from Eq. 2.12 becomes |b|-1/2 times larger than that for x < 1.

In summary then, we have considered reflected and transmitted waves for a
grazing X-ray beam incident on a homogeneous, planar substance with a sharp
interface. The transmitted wave intensity has a finite 1/e penetration depth A,
partly due to ordinary absorption in the medium, but mainly due to the
phenomenon of total external reflection. When the grazing angle a is less than
the critical angle a. the transmitted wave propagates exactly parallel to the
surface when ordinary absorption is neglected, and almost parallel to the
surface for the absorption occurring in practice. This wave is called the
evanescent wave. For a > a. the reflected wave has a finite intensity
approaching (a./2a)4 for a>ac.

For quantitative results at given wavevector k and a given material one
first calculates the critical wavevector Q. using Eq. 2.9 and the absorption
parameter b using Eq. 2.7. With this information figure 2.2 can be used directly
to estimate penetration depth, reflectivity or evanescent intensity. For more
accurate work use formulas 2.8 and 2.10-12 recalling that the quantity x' is a
complex number.

3.SPECULAR REFLECTIVITY AND INTERFACIAL DENSITY PROFILE

On an atomic length scale the interface between the liquid and the vapour
above it is not sharp. In this section we shall see how the specular reflectivity
R(Q;) at wavevector transfer Q; is changed accordingly from the Fresnel
reflectivity Rp(Q;). The electron density profile is denoted p(z) and the density
gradient p'(z), see Fig. 3.1.

In order to derive R(Q,) we consider the reflected wave as a superposition of
waves reflected from infinitesimal planes at varying depth z, implying the
phase factor exp[iQ; -z]. At first we neglect refraction and absorption effects.
The reflectivity of a thin plate® with thickness Az can be derived from the
following simple dimensional argument. The reflected wave is the result of
Thompson scattering of the incident photon wave by the individual electrons.
The reflected amplitude AA; must be proportional to the incident amplitude
Aj, to the scattering length of a single electron and to the number of electrons
per unit area perpendicular to the incident beam, p(z)Az/sina. Since AA/A; is
dimensionless and the dependence on quantities with dimensions of length
such as scattering length, density and plate thickness is exhausted by their
product, the only additional length in the problem, the X-ray wavelength A
must enter linearly. Hence,

=c X ry p(z)Az/sina

:c(4/Qz)[nper]- p@Vp - Az

(3.1)
= c(@2/4Q)) pl2lp, Az



Q: =2k sina

Fig.3.1. The density variation across a surface is indicated by shading in the
left part and more quantitatively by the function p(z) in the right part.
The reflectivity versus wavevector transfer @, is related to the
Fourier transform of the gradient of the density, p' (2).

using Eq. (2.9) for Q.. Here, c is a dimensionless constant to be determined, and
pwois the electron density below the interface region.

The resulting reflected wave amplitude A, is obtained by integration of Eq.
(3.1) with the appropriate phase factor exp[iQ,z] included. We find

A
— =(c)Q/2Q)°0@Q) (3.2)
with
3.3
¢Q,) = iQZP;lJ p(2)expliQ z] dz (3.3)
= P;IJ dg(Z)- expliQ - zldz (3.4)
A Z

being the Fourier transform of the gradient of the density profile across the
interface. In the limit of a sharp interface the density gradient approaches a
delta-function, $(Q;) approaches unity and the reflectivity is

A /AR=1d> @Qreq)t 1 (3.5)

In this derivation we have neglected refracting effects, which is equivalent
to Q,> Q.. We saw in the previous section that in this limit RF = (Q¢/2Q;)* so
we conclude that |c|? = 1 and are lead to the conjecture

2 (3.6)
R@Q,) =Ry(Q)- @),

¥4 Z
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replacing (Q./2Qz)4 by the general form Rp(Qy).

We discuss the limits of validity of the master formula (3.6): In the
superposition of reflected waves from thin plates we used the phase factor
expliQ;z] with Q; = 2ksina. A more accurate phase than Q,z would be
Q',z = 2ksina'z with o' = (a®?—ac?)?

Furthermore, multiple scattering effects have been neglected, e.g., a
reflected wave from a thin plate at zo might be reflected back into the substrate
from another thin plate at z; closer to the surface. Such multiple scattering
effects are not important for Q,> Q. as the reflectivity for a plate gets very
small in this limit, but for Q, approaching Q. the validity of Eq. (3.6) might be
questioned. In order to elucidate this problem we show in Fig. 3.2 the

T T T T T T T T T T T T T

m_f\ ----- Kinematical Theory (egs. 3.3, 3.6) |

MR o -

R/Rfr

0.2+ Dynamical Theory (Parratt, 1954) ﬂ
Kinematical Theory, with refraction correction
i L 1 i 1 1 1 1 1 1 . L 1 1
9t 2 3 4 5 & 7 @& 9 10 I 12 13 1%

Q/Qc (Qc = 0.0217 A-1)

Fig.3.2. Normalized reflectivity R/Rf versus normalized wave vector transfer

Q./Q¢, as calculated:
---- (i) using the kinematical master formula, Eq.(3.4);

Q:%and
(iii) using the dynamical theory by Parratt’.

(i1) using Eq.(3.4) with refraction correction (replacing Q, by

Methods (ii) and (iii) give almost identical results, while (i) differs

noticeably for Q, < 10-Q., and significantly for @, < 2-Q..

reflectivity of a particular density model corresponding to a typical amphi-
philic monolayer on water as calculated using Eqgs. (3.4) and (3.6), the so-called
kinematic approximation. We now compare this to an exact calculation method
devised by Parratt” in 1954. The model used in both calculations consists of
two stratified layers of different densities. The top layer corresponds to the tail
density of the film, the next layer to the head density, cf. Fig. 1.1a. At each of
the three interfaces (air-tail, tail-head, head-water) both incoming and
outgoing rays can be reflected or transmitted and one imposes the usual
boundary conditions for the electric field of the electromagnetic wave at each
interface. This results in a set of coupled linear equations which can be solved’
for the overall reflectivity. We conclude from Fig. 3.2 that the simple kinematic
approximation, Eq. (3,4), is adequate for interpreting reflectivity data from
amphiphilic monolayers on water for grazing angles exceeding twice the
critical angle and that the remaining discrepancy can be repaired by inclusion
of the refraction correction (Q,' instead of Q, in Eq. (3.4)).

Before closing this section let us go back and discuss in more detail the
quantity $(Q;), the Fourier transform of the density gradient, in the case of a
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monolayer on a substrate. It is convenient to separate the density into two
parts

p(@) = p,(2)+p,(2) 3.7

where p1(z) = p.-H(z) derives from the subphase or substrate, H(z) being the
step function, and pg(z) is the density due to the molecules in the monolayer.
The effect of interfacial diffusiness will be discussed below in sections 5 and 6.
Denoting the electron density in the molecule by py(x,y,z) and the average
molecular area by A, pa(z) becomes

p2(z) =A"! J pm(x,y,z)dxdy (3.8)

It follows from Egs. (3.3), (3.4) and (3.8) that

$@Q) =1+p;'GQ,) I p,@expliQ zldz

(3.9)
=1+iQ (p A~ I p,_(x,y,2expliQ zldxdydz.
In terms of the molecular form factor
FQ = J P, (lexpliQ rld’ | (3.10)
Eq. (3.9) becomes
(3.11)

Q) =1 +iQZ(pr)_1F(0,0,QZ) .

Using this form of $(Q;) in the master formula Eq. (3.6) for the reflectivity it is
particularly transparent that the specular reflection along Q = (0,0,Q;) is
formed by the interference of waves scattered from the substrate, the first term
in (3.11), and from the molecular film, the term with the molecular form factor
F(O,OyQZ)-

In particular, we note in passing that the substrate scattering (measured
perhaps with an uncovered surface) should not be subtracted from experi-
mental data as a background. The correct experimental background is found by
off-setting the detector laterally from the specularly reflected beam.

4. GRAZING INCIDENCE DIFFRACTION AND BRAGG RODS

In this section we discuss the similarities and differences between
information obtained by specular reflection (XR) and by grazing incidence
diffraction (GID). Experimental examples are discussed in section 7 below.

For simplicity, we assume a 2D-periodic structure ("2D-crystallinity”) in
the monolayer film floating on the subphase: The molecules are arranged in
identical unit cells which form a regular lattice. Then, in GID, Bragg
diffraction occurs when the lateral scattering vector Qnor, c.f. Fig. 1.1b,
coincides with a reciprocal lattice vector Ghk: The scattering is concentrated in
so—called Bragg Rods (parallel to the Q;-axis), defined by two Laue
conditions or, in vector notation, by the equation Qnor=Ghk. By constrast, XR
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is characterised by the condition Qpor=0. The substrate gives no Bragg
diffraction for Qpor#0 so in GID there is no interference between the scattering
from the substrate and that from the film. The substrate scattering just
contributes to a flat background which can be subtracted from the total
intensity to obtain the GID signal. The purpose of using grazing incidence is to
minimize the background level by illuminating a depth of only a few
nanometers, c.f. section 2. The GID signal, I1k(Q,), is proportional to the square
of the unit cell structure factor (identical to the molecular form factor, Eq.
(3.10), for the case of one molecule per unit cell):

GID: o A2 2 4.1
Li(Q)=ATTIFG, Q)" (4.1)

where A, is the unit cell area. Compare Eq. (4.1) for GID with the XR result:

XR: 2 (4.2)
1 .(Q)=R,Q) | 1+iQ,( A)"'F(0,0,Q)

Thus, XR and GID measure different parts of the monolayer structure factor,
corresponding to different projections of the monolayer structure. XR
corresponds to the projection of the monolayer density onto the z-axis and
includes also scattering from the sub-phase. GID - with Q,=0, i.e. , grazing
exit as well as grazing incidence - measures the structure of the
”2D—crystalline” part of the monolayer, as projected onto the x-y plane.
Finally, measurement of the GID signal Ihx(Q;) versus Q; (so—called Bragg
Rod scans) gives three-dimensional information about the 2D-crystalline part
of the monolayer.

We end this section with a couple of examples which further illustrate the
similarities and differences between the XR and GID methods.

(i) Assume, for example that only the aliphatic tails order laterally whereas
the polar heads are laterally “disordered”. This means that the
Debye-Waller factor (implicit in Eq. (3.10)) will be large and anisotropic
for the "head” part of the molecule, so as to effectively make the heads
invisible for =horizontal wavevector transfers Q. Thus, effectively, for
GID the formfactor to be used is that describing the tails, - the polar heads
will just contribute to the background together with the substrate. In XR
the lateral disorder of the polar heads is irrelevant; they do indeed
contribute to the average density modulation across the surface.

(ii) Another example where XR and GID give complementary rather than
identical information is that of a heterogeneous film: Islands of 2D-solid
phase coexisting with a non-diffracting 2D-liquid phase. The GID
measures the form factor of the molecules in the solid islands whereas XR
yields some sort of average density profile across the surface. The wording
"some sort of average" is deliberately vague, because one must distinguish
between averaging the formfactor before squaring in Eq. (4.2) (coherent
averaging) or averaging the reflected intensities which is obviously
required if the size of the islands is much larger than the X-ray coherence
length given by 1/ky and 1/ky of Fig. 5.2 in the following section.

5. THERMAL ROUGHNESS OF LIQUID-VAPOUR INTERFACE

Consider in Fig. 5.1 a liquid surface confined within the area LXL. A
capillary wave with amplitude ugq and wavelength A or wave vector q has been
excited. The excitation energy has two origins: the surface has been enlarged,
which requires the surface tension energy E., and liquid has been lifted from
troughs to crests, which requires the gravitational energy Eg. In the bottom
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Uq

y(x) = ugsingx

; X
Fig.5.1. Top: A capillary wave, confined within the area LXL, of
wavelength A or wavevector g and amplitude u.
Bottom: Side view of one wavelength. The arc-element has a

length d€ = [1+(dy/dx)?]'?dx or approximately
[1+Hugqcos(qx))2]dx.

part of Fig. 5.1 we consider one period of the wave. Note in passing that there
will be L/A such periods along the x-axis. The excess surface is L{ugqq/2)2A(L/A)
and the associated energy E. = L?y(uqq/2)? where y is the surface tension. The
gravitational energy for one period is the integral of dEg over half a period as
the liquid in the trough in the second half of the period is lifted into the crest in
the first half of the period. The entire gravitational energy is
Eg = L2pg(uq/2)2. Since pg has dimension of energy/area times an inverse
length squared, it can be written as

(5.1)
pg =y kZ
where ky is a wave vector and therefore
. 5.2
E =E +E) = :L%u%2wq®+kD. (5.2)
q c g q g
Equipartition of gives the thermal average value <Eq> = kpgT/2 or
- _ (5.3)
p<ul> =k TL Ay 17!
Summing over all g-modes gives <u2> :
<u?> =3y <ul> = kBT(L/Zn)2L_2J mu[(y(q2+k§)]—l 2nq dq (5.4)

q 0o
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or

2 2
k? +k k,T k
2. _ _9 max g\ B 1_ ] max (55)
<u“> = kBT(Zn) (n/y)loge( 5 ) = o loge <
kg Y g

In the integral over q-space we have introduced an arbitrary cut-off wavevector
kmax Which is of order n/(molecular radius).

In this derivation we have assumed that the effective surface tension is
independent of wavevector. In reality this is not the case. In deriving the
excess surface area of mode q we used that the line element d€ along the curved
interface y(x) is (1 + (dy/dx)?)!'”? and we expanded the square root to first order
as (1 + (dy/dx)?/2). Within this approximation the total energy is then a sum of
independent, harmonic q-modes. However, with the square root expanded to
higher orders one realizes that the modes are not harmonic: the energy of a q-
mode contains all even powers of q. As long as (dy/dx)* = (uqq)? << 1 the
harmonic approximation is accurate for describing the excitation of one single
g-mode out of the ground state, but when it comes to excite this mode out of a
general, thermally excited state, the population of the other g-modes matters
for calculating Eq. It is convenient to write Eq as proportional to y(q)q? with an
effective surface tension y(q) depending on q. By symmetry there cannot be any
term linear in q, and the coefficient to q> must be proportional to kgT, as it
reflects the thermal population of the other g-modes. To order g2 the effective
surface tension y(q) is therefore of the form:

5.6
y(q)=y+akBTq2, (5-6)

a being a dimensionless constant. Meunier® finds a=3/(8n). Rewriting Eq.
(5.6) as

(5.7)

y(@ =y +(ak )%,
5.8
k=?=ak,Tly , a=3/(8n), (5.8)

we find, in analogy with Eq. (5.4)
<u®> = kBT/(4n2y) J [ +(q/km)2)(q2+ kz)]—12nq dq

2 [T 2 e 2 1 Ko 5.9
= kyT/(4n"y) [ ) [q"+k +k 417" 20q dq= kgT/(2nylog, =, (5.9)

g

i.e. the same form as Eq. (5.5) but with the arbitrary cut-off wavevector kmax
replaced by the mode-mode coupling parameter ky, known from Eq. (5.8). For
water the numerical values are 1.63 A-! and 1.23 A-!, respectively. The
relative difference between loge(kmax/kg) and loge(km/kg) is thus only 1.6 per
cent. We now generalize this result to the case where the base surface is
covered by a monolayer®. This layer has a certain stiffness against undulations
so a fluctuation as given in Fig. 5.1 will require an additional energy of the
form 4 -K-ug®q*- L% Expressing K in units of kgT by the dimensionless
number x

(5.10)
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we see immediately from (5.9) that ky, ~2 in the integral must be replaced by

5.11
k,”= k- 2+ Kly = (a+0k,Tly. (5.11)

M

The lower limit of zero in the two-dimensional integral (5.9) is an idealization
which cannot be fulfilled in an actual experiment. Here one must distinguish
between intensity which is specularly reflected and intensity scattered out of
specular reflection by the surface roughness. This, then is a matter of the
lateral wavevector resolution widths k, along the direction of the beam
projected onto the surface and ky perpendicular to this direction. In practice
both ky and ky are much larger than kg, so the second term in the integrand
in Eq. 5.9 can be neglected. The observed roughness o is then given by

o<

OZZkBT/(zlnzy)] J [q2+k;12q4]—1dq'dq_ (5.12)
k Y

LI §

k

The integration area is indicated in Fig. 5.2 as the shaded area. In a synchro-
tron X-ray reflectivity experiment the resolution may well be entirely
determined by the detector apertures (width wq, height hq) relative to the
distance D between sample and detector since the incident beam collimation
usually is very narrow. In that case the resolution function is box-like with
dimensions as indicated in Fig. 5.2. Utilizing that the resolution perpendicular
to the beam is much broader than along the beam, cf. Fig. 5.2, the integral 5.12
can again be carried out analytically'. The result is a roughness parameter o
which depends logarithmically on the wavevector transfer Q, because the
resolution rectangle varies linearly with Q;:

2 _ (5.13)
0% = kBT/(2ny)loge(kM/ky), ky = Qz(hd/D)_

Note that neither the gravity term kg nor the width of the detector aperture wq
appears in this final result.

Daillant et al. find in their study of a behenic acid film on water?, that for
surface pressures below 17 mN/m the action of the behenic acid film on the
thermal roughness is just to diminish the surface tension from the pure water
value of 72 mN/m to (72-17)mN/m = 55 mN/m and indeed they find a rms.
roughness Oexp varying as y~'/ as shown in the left part of Fig. 5.3 which is
reproduced from Ref. 9. Furthermore, oexp agrees with o as calculated above
without any adjustable parameters. In their original study of thermal
fluctuations on a water surface Braslau et al. found! oexp 10% larger than o
from (5.13). Recent measurements using in situ monitoring of surface tension
and ultra pure water!'? indicates that our original results! might have been
influenced by an impure surface, both for water and carbon-tetra-chloride, and
it seems as though the capillary wave model indeed accounts for the entire
roughness of the surface of simple liquids like water, methanol and carbon-
tetra-chloride.

Most interestingly, Daillant et al.? find a discontinuous decrease in Vy-o
around a surface tension of 53 mN/m. They ascribe this observation to a first
order phase transition of the monolayer from a soft layer with a small value of
the bending constant to a more rigid layer with a bending constant of around
200 kT. Because the observed effect only varies as the square root of the
logarithm of km/ky, cf. Eq. 5.13, it requires either a very rigid layer (x > 1) or a
low surface tension y to significantly reduce the pure capillary wave roughness.
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Fig.5.2. The capillary r.m.s. roughness ¢ is obtained by integrating Eq.
(5.12) over the whole plane except for the inner rectangle
determined by the experimental resolution.
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Fig.5.3. Roughness parameter ¢ for a behenic acid monolayer, ref. 9. The
jump at y ~ 563 mN/m corresponds to the monolayer attaining a
large rigidity against bending fory <53 mN/m.
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6. REFLECTIVITY OF ARACHIDIC ACID FILM

The simplest monolayers may be those composed of fatty acids. The
molecules consist of a hydrocarbon chain and a carboxylic acid headgroup. The
lateral pressure as a function of molecular area A for one representative of this
class, arachidic acid on a pure water subphase is given in the inset of Fig. 6.1.
On compressing the monolayer to a molecular area of Ay = 24 A2 the lateral
pressure remains below the detection limit of 1 mN/m. On further increasing
the molecular density the pressure increases almost linearly with decreasing
A. At a distinct pressure ng = 25 mN/m and molecular area Ag = 19.8 A2 the
pressure/area isotherm becomes very steep. The phases above and below ng
have previously been called solid and condensed liquid*, respectively. We will
show to what extent X-ray scattering provides a better picture.
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Fig.6.1. Normalised X-ray reflectivity R/Rfg vs. vertical wave vector
transfor @, for arachidic acid monolayers on pure water (pH 5.5,
T = 20°C). The measurements are displaced vertically by 0.25
units and correspond to the surface pressures indicated on the
isotherm of the insert.

Fig. 6.1 gives the reflectivity vs. wave vector transfers Q; perpendicular to
the surface for various surface pressures indicated as by arrows in the
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isotherm. One clearly observes a shift of the extrema to lower Q, with
increasing surface pressure.

The full lines through the data points represent a simple box model of the
monolayer density p(z) with some adjustable parameters. In the model, the
aliphatic tail region has a constant density p, and a certain thickness It
whereas the polar head region has density p,; and thickness ly, see figure 6.2.
The sharp box edges are smeared by one common Gaussian function so the

p'(z)
-dr-1y/2 K\ P

Tail

Y B e LY
plz) +

Head
/2 —-——-

Water

N

v

Fig.6.2. Two-box density profile model of a Langmuir film. The boxes,
describing the tail part and the polar head part respectively, are
smeared by a Gaussian, as indicated by the full line. The density
gradient in this model is two positive Gaussians followed by one
negative Gaussian.

model contains five parameters: Two thicknesses, two densities and a smearing
parameter. This model has the virtue that the Fourier transform of the density
gradient can readily be written down. Let the origin be in the middle of the
head group region which extends from —€y/2 to +€H/2 with a density of pH.
The tail region extends from —f1—fH/2 to —fy/2 with a density of pr. The
density gradient is thus a set of Gaussians, all with the same width parameter
o, and located at the edges of the boxes at z = — €1 —fy/2, —€fy/2 and +€H/2.
The height of each Gaussian is the difference between consecutive box
densities. The Fourier transform of a Gaussian is a Gaussian itself, so
altogether we find for the Fourier-transform, ¢$(Q) = (1/p.)[p'(z)exp(iQz)dz, of
the density gradient p'(z) to be:

@ = 1/p ) exp(—Q%%2)

{pTexp[—iQ(€T+ €H/2)J +(py —ppexpl— 'LQ{,’H/2]-—(pH - l)exp[iQé’H/2)}. (6.1)
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In order to obtain a direct qualitative understanding of the features in the
normalized reflectivity, R(Q)V/Rp(Q) = |d(Q)|?>, we shall make one further
approximation in taking the tail density to be almost that of water, i.e. pr =
Pw. In that case we get ¢(Q) = ¢1(Q) with

- (6.2)
b, (Qexp@Q%0%2) = expl— iQE,+£,/2)} - 2ilp,/p,—1sin[QL,/21.

In the complex plane it is easy to visualize the two terms on the right hand
side of Eq. (6.2) versus Q. The first term starts out at (1,0) for Q@ = 0 and then
moves clockwise around the unit circle as Q increases . The second term is
bound to the imaginary axis. It starts out at (0,0), then increases almost
linearly with Q along the negative axis and then continues along the
imaginary axis as a sine wave versus Q. Suppose for the sake of argument that
fH = €1 and pH/po = 1.5. For Q€1+ €H/2) = 1n/2 there is maximal
constructive interference with the first term being at (-1,0) and the second term
being at (—i/2,0). At a 3 times larger Q there is complete destructive
interference as the first term is at (+1,0) and the second term is at (-1,0). Ata 5
times larger Q we have again constructive interference, the first term being
again at (-1,0) and the second term being at (-i/2,0) etc. When, in reality, €y is
considerably smaller than €1 this second constructive interference will
obviously be larger than the first, as observed in Fig. 6.1. If the minimum in
the reflectivity data is very pronounced, the data become very sensitive to the
values of parameters, because a deep minimum simply reflects a very delicate
balance in the destructive interference phenomenon. From the second term in
Eq. (6.2) one also deduces that the height and depth of the reflectivity extrema
depend sensitively on (pg — p»). The head group density is therefore determined
very accurately.

Best fit results are shown in Table 1.

Tablel. Fitted parameters of the model densities p(z) of Fig. 6.2,
corresponding to the reflectivity data of Fig. 6.1. The densities are
normalized to the density of water,p, = p,, = 0.334 elA3.

o A Nt &t pT/PW 4% PH/PW Ny Y

label | mN/m A? - A - A - - A
8 25.0 19.8 157 =242 0.983 3.07 1.59 32 3.38
21.6 20.5 =157 23.4 0.979 3.48 1.48 35 3.22
B 159 21.7 =157 22.2 0.977 3.88 1.38 39 2.99
a 11.0 22.7 =157 32.2 0.977 : 4.43 1.31 44 2.93

What are reasonable dimensions of the boxes of constant density? First,
consider the hydrocarbon tail. According to Ref. 11 the average distance
between two CHg groups, projected onto the molecular axis is 1.265 A. Each
CHg group contains 8 electrons and is in Fig. 6.3 represented by a Gaussian
distribution of width ¢ = 1 A (which is certainly smaller than the final fitted
smearing parameter). The neighboring CHg group contributes a similar
Gaussian but displaced 1.265 A along the z-axis. The last hydrocarbon group of
the aliphatic tail is a CH3 group with 9 electrons. If this is also represented by a
Gaussian of the same width the height must be 9/8 of the height of the CHg
Gaussians. As is apparent from Fig. 6.3, the molecular density is well
approximated by the two-box model, provided only that the terminal CHg3
group is represented by a segment (9/8)-1.265 A long, to give the correct
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number of electrons in the tail. The tail length in the all-trans configuration is
thus ,

€0=1[n+(9/8)]- 1.265A (6.3)

The z-positions of the atoms of the COOH head group are more difficult to
assign. A plausible choice wasmade in Fig. 6.3.

Density p(z) [e~/A3)

Fig.6.3. Top: Space-filling model of the molecule.

Bottom: Full lines: Each CHg group is represented by a Gaussian
succesively displaced by 1.265 A. For the terminal CHj
group and the polar head group COOH, see text.

Dashed lines: Box model and smeared box model of the
density. The width parameter 0 = 1 A was chosen for
display purposes. In reality, the fitted o = 3 A.

For arachidic acid the number n of CHg segments is 18 and one obtains
€07 = 24.2 A. Thus the number of fitting parameters was reduced to four. With
the density p, determined from the parameter fit one then calculates the
number N of electrons in the hydrocarbon moiety according to

_ (6.4)

Ny = ppAby
For the particular case one obtains N7 = 157e~/molecule which has to be
compared with the number N7 = 153e~/molecule derived from the molecular

formula (CH3—(CHg)18) of the tail. This discrepancy may be an artefact
introduced by the simplicity of the two box model or indicates that part of the
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hydrocarbon moiety may be penetrated by water (the discrepancy corresponds
to 40% of one water molecule). Now keeping the number Nt constant,
independent of molecular area, p,, and € are related according to Eq. (6.4) and
the model parameters of table 1 are deduced using four independent fitting
parameters.

The tail region thickness, £;, decreases monotonically as the area per
molecule increases. This, together with the constancy of p,, strongly indicates
that the aliphatic tails are predominantly in the all-trans configuration and
uniformly tilted. From geometric considerations one can then derive the tilt
angle t by comparing the length €, of the tilted tail with the value {?OT for
vertical orientation:

{')T
cost = —
0

2

(6.5)

One derives that on going from A to Ag the tilt angle t continuously decreases
from about 30° to 0°.

Considering the parameters in table 1 for the head group, the correlation
with molecular models is more ambiguous since the hydrophilic region not only
contains the carbonyl group but probably also some water. In analogy with
Eq. (6.4) Nq is determined by the product of £, and p,;. The number of electrons
in the carbonyl group COO - is 23, so the data indicate a hydration of one water
molecule per carbonyl group at the highest pressure increasing to two water
molecules per carbonyl group at the lowest pressure. The decrease of £, with
increasing pressure may indicate a gradual confining of the head group
moieties in a plane parallel to the surface. If this ordering were perfect, £,
would correspond to the dimension of a COO~ group in the direction of its
symmetry axis. From molecular models one estimates values between 2.5 and
3.0 A, not far from the value of £y at the highest pressures.

7. IN-PLANE DIFFRACTION AND BRAGG ROD DATA FROM ARACHIDIC
ACID FILM

In this section we discuss grazing incidence diffraction (GID) from a
monolayer of arachidic acid on water.

The geometry for GID experiments is shown in Fig. 7.1. The top view shows
the footprint of the grazing incidence beam on a water/film surface as well as
the specular reflected beam. The grazing incidence angle is typically 0.8 times
the critical angle for total reflection so according to Egs. (2.12), (2.8) and Fig.
2.2 the penetration depth of the evanescent wave (EW) is around A =
1.7/Q. or 77 A. The EW is diffracted by the monolayer, and we select for
detection a horizontal scattering angle of 26 by the Soller collimator and a
vertical scattering angle of af by the Position Sensitive Detector PSD. The
signal is diffrated from the "crossed-beam-area" ABCD of the monolayer and it
is clear that the signal rate is proportional to the widths of the two crossed
beams. A broad Soller collimator is thus much more efficient than a slit
geometry.

Let us first consider the compressed state where the molecular area is Ag
and where according to the specular reflectivity data the molecules are
upright. The ordered structure forms a hexagonal lattice with a corresponding
reciprocal lattice as indicated by the broken lines in Fig. 7.2 (top part). The
Bragg scattering selection rule (the horizontal component, Qnor, of the
scattering vector must coincide with a reciprocal lattice vector Gpy) implies
that the scattering seen in a side view (bottom part) is confined to vertical
Bragg rods through Gpi. Due to the finite length L of the molecule the
intensity along a Bragg rod is not constant but peaks at Q,=0 with a width of
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SIDE VIEW 'T’

DIFFRACTED
FROM EVANESC .BEAM

Fig. 7.1 Top view and side view of the GID geometry. The footprint of the
grazing incidence beam is indicated by the darker area of the
Langmuir film. The position sensitive detector PSD has its axis
along the vertical direction. Only the crossed-beam-area ABCD
contributes to the scattering.

order n/L. If, more specifically, we model the molecule by a cylinder of length L
and diameter a, the molecular form factor along the molecular axis Q,'is

(7.1)

S(u)=sin(u)/u

with u=Q,L/2.

The radial molecular formfactor, R(|Q;|), at radial Q; reflects the electron
distribution of the CHg groups projected onto a plane perpendicular to the
molecular axis. Each CHg group has an electron distribution similar to that of
oxygen and therefore its Fourier transform is approximately the atomic
scattering factor of oxygen. The CHg groups are connected in a zig-zag line
with a ~110° opening angle and a distance of 1.54 A. The molecule is assumed to
rotate freely, so the center of each CHg group is evenly distributed on a circle of
radius R=(1.54/2)cos(110/2)=0.44 A. The final electron distribution is the
convolution of each CH2 distribution with the center distribution so the
Fourier transform is the product of the center distribution, J,(Q.R), and the
oxygen scattering factor fo(Q,). Within the range of interest, 1.5 A~! < Q; <
2.0 A-!, the radial formfactor is well approximated by a Lorentzian in terms of
the dimensionless variable v = Qa

R(v)x(1+v%)~! (7.2)

witha=0.38 A.
We now consider the model proposed on the basis of the reflectivity data:
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Unit Cell h k lattice

Top:

Side:

(=

BRAGG RODS

Fig7.2 At high pressures the molecular electron density is modelled by an
upright cylinder of length L and diameter a, the molecules forming a
hexagonal lattice (broken line). At lower pressures the molecules tilt
and the unit cell becomes distorted to a centered orthorhombic cell
(full line). The lower, right panel indicates the Bragg selection rule
(rods) and the formfactor of a tilted molecule (ellipse).

For pressures lower than ng the area per molecule , A, becomes larger than Ag
and the molecules tilt but remain closed packed, i.e., the tilt angle t is given
by

cos(t) = A /A, (7.3)

Tilt angles t deduced from Eq. (7.3) were previously shown!? to agree well with
the values deduced from Eq. (6.5). With tilted molecules, the Bragg selection
rule still holds but the molecular formfactor, indicated by the ellipse in the
right bottom part of Fig. 7.2, tilts. In Fig. 7.2 a particular tilt direction (towards
nearest neighbour) was chosen but in general we define the Qx-axis as the tilt
direction. In the particular case of tilting towards nearest neighbour we see
from Fig. 7.2 that along the (1,—1) and (—1,1) Bragg rods the intensity still
peaks at Q, =0, whereas along the (0,—1) and (—1,0) rods the intensity peaks
at Q,>0 and that along the (1,0) to (0,1) rod at Q,<0 — the latter not being
observable as only scattering away from the water surface can be detected. In
the cylinder model the molecular formfactor is still as given in Eq. 7.1 and 7.2
in the molecular frame (Q,',Qy,Q.") so in the laboratory frame we insert u and
v from

v=a- IQ§+ (Q,cost +Q sint)*)” (7.4)

134

83-14



u = (Q,cost — Q sint)L/2 (7.5)
with

_ - - (7.6)
Qx - |th|COS lphk ? Qy - Ithlsmlphk ’

Gnk being the reciprocal lattice point considered and whi the angle from
Ghk to the tilt direction. Since the sample is a two-dimensional powder the
observed Bragg rod intensity, Iobs(Q,), contains contributions from several
(h,k) reflections. The tilting of closed-packed molecules implies a distortion
or strain of the hexoganal lattice to a centered orthorhombic lattice as is also
indicated in Fig. 7.2, so that the optimal 26 position for observing different
(h,k) rods may split beyond the experimental resolution for sufficiently large
tilt ~ in the example of Fig. 7.2 into a high angle peak for the {1,~1} rod and
a low angle peak for the {0,1} and {1,0} rods. After discussing this tutorial
model let us look at the actual data in Fig. 7.3, left column. At the two
highest pressures (panels ¢ and d) there is no observable splitting in 26 but
at the two lowest pressures (panels a and b) the optimum 20 position for
the Bragg rod centered around Q; = 0 (open circles) is larger than for the
Bragg rod which peaks at Q, =~ 0.5 A~! (crosses).

The data exhibit a very sharp peak at Q, = 0. The width is of order
Q¢ - the critical scattering vector for total reflection. This is an interference
effect analogous to that discussed in section 2: Recall that for 260 = 0
and aj = arf = a., the incident and total reflected beams interfere
constructively to produce maximum intensity above and below the
interface (cf. Fig. 2.2, third panel). In the present case 26 is around 19° so
clearly neither the incident nor the specular reflected beams contribute
directly. Around 20 = 19° the beam(s) must have undergone diffraction by
the in-plane ordered structure of the monolayer. However, the diffracted
rays are distributed over a range of angles ay, c.f. Fig. 7.1, and, in particular,
the diffracted rays with af = +a. and the rays diffracted into af = —a. and
then total-reflected in the interface will interfere constructively. Once this
mechanism is appreciated it can of course be accounted for in model
calculations. In terms of x = af/a. the interference effect implies a factor
V(x)

V(x) = 9
2x/(x +(x“=1)%), forx > 1

in the diffracted amplitude, cf. Egs. (2.6) and (2.11) and Ref. 13.

The data are compared with the tutorial model of tilted cylinders in
columns 2 and 3 of Fig. 7.3. In model 1 the molecules tilt towards nearest
neighbours, in model 2 towards next nearest neighbours. In both models 1
and 2 the intensity is calculated as the sum over the Bragg points
(1,0),(1,0),(1,—1) ete. of (S(u)R(v)V(x))? from Egs. 7.1-7 using tilt angles t of
7°, 14°, 20°, and 22° respectively from bottom to top. The squared structure
factors are multiplied by the Gaussian smearing exp(—(Qz;0)?) with a
smearing parameter of 0 = 1 A — considerably smaller than the over-all
smearing of around 3 A found in the reflectivity data as discussed further
below. As cylinder length L we used the tail length of 24.2 A from Eq. 6.3.

The tilt angles, t, were determined from Eq. 7.3, inserting for A the unit
cell area Aceq, calculated from the observed 20 peak positions. Apart from
the smearing parameter and one over-all scale factor for all the model
curves of Fig. 7.3, the only free parameter in generating the intensity profile
of the Bragg rods is thus the direction of tilt. In comparing the data!* with
the model we note the following points:
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Fig. 7.3. DATA. Arachidic acid. 2D-powder Bragg rods observed at
nominal pressures of 10,16,20,21 mN/m (panels a to d,
respectively). In case c and d the optimal 20 settings for
the merging peaks at @, = 0 and Q; > 0 coincide, but
in case a and b they split as indicated by open circles
(optimum 26 for Q, = 0) and crosses (optimum 20 for
Q.= 0.5A-1).
MODELS. Both models are the tutorial model of Fig. 7.2. In model

1 the molecules tilt towards nearest neighbours, in
model 2 towards next nearest neighbours. All other
parameters are essentially determined from the
reflectivity data. The dashed lines represent a perturba-
tion of the models: The molecules were tilted in a
direction 8° from the symmetry directions.
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(i) Model 1 approximates the data quite well at all four tilt angles, whereas
model 2 cannot at all account for the considerable intensity observed
around Q; = 0 for large tilt angles. The model demonstrates in a simple
way that GID data are quite sensitive in determining the tilt direction as
well as its magnitude.

(ii) The smearing parameter ogp is only 1 A compared to oxg = 3 A for the
XR data. This may be related to the different coherence lengths probed in
XR and GID experiments. The coherence length defines the size of the area
inside which the squared deviations from ideal flatness are averaged to
yield a roughness parameter o. For XR, this has already been discussed at
length in section 5. The relevant quantity for XR is the lateral Q-
resolution area. In Fig. 5.2 this area is a rectangle with dimensions of the
order 10-2 A on one side and 103 on the other side. In GID the 26 peak
width is typically § = 0.3° = 5 mrad, to be compared with an instrumental
resolution width of 0.1°. The intrinsic width is therefore of the order k§ =
2:10-2 A-1, so the coherence length is much shorter in the GID
experiment than in in the XR experiment. Consequently ogip may be
expected to be smaller than oxR, as indeed observed experimentally.

8. CONCLUSION

The application of X-ray scattering methods to the study of the liquid-
vapour interface has been developed theoretically and illustrated by
experimental examples. The surfaces of simple liquids are rough due to
thermally excited capillary waves. The interface can be characterized by one
parameter, the rms. diffuseness, o, which can be determined by X-ray
reflectivity measurements, as illustrated for the case of water.

A liquid surface with a surfactant monolayer requires more structural
parameters for its characterization. By X-ray reflectivity the densities and
thicknesses of constituent sub-layers can be deduced. For rod-like arachidic
acid molecules, the results could be interpreted in terms of tilted, close-packed
molecules, with the tilt angle determined from a cosine relation, Eq. (6.5).
Grazing Incidence Diffraction gives information about the lateral order in the
interface: lattice spacings and correlation length. By measurement of the
intensity variation along the Bragg rods, structural information
complementary to that from X-ray reflectivity can be obtained. For arachidic
acid monolayers, this allows determination of the tilt angle by a sine relation,
Eq. (7.5) and figure 7.2.

Finally, we note that the methods here presented are applicable as well to
hard interfaces, e.g., surfaces of crystalline solids or Langmuir-Blodgett films*
of surfactant molecules on solid supports.
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